Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Psychol Med ; : 1-7, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-2304895

ABSTRACT

BACKGROUND: To characterize the association between the protracted biopsychosocial coronavirus disease 2019 (COVID-19) pandemic exposures and incident suicide attempt rates. METHODS: Data were from a nationally representative cohort based on electronic health records from January 2013 to February 2021 (N = 852 233), with an interrupted time series study design. For the primary analysis, the effect of COVID-19 pandemic on incident suicide attempts warranting in-patient hospital treatment was quantified by fitting a Poisson regression and modeling the relative risk (RR) and the corresponding 95% confidence intervals (CIs). Scenarios were forecast to predict attempted suicide rates at 10 months after social mitigation strategies. Fourteen sensitivity analyses were performed to test the robustness of the results. RESULTS: Despite the increasing trend in the unexposed interval, the interval exposed to the COVID-19 pandemic was statistically significant (p < 0.001) associated with a reduced RR of incident attempted suicide (RR = 0.63, 95% CI 0.52-0.78). Consistent with the primary analysis, sensitivity analysis of sociodemographic groups and methodological factors were statistically significant (p < 0.05). No effect modification was identified for COVID-19 lockdown intervals or COVID-19 illness status. All three forecast scenarios at 10 months projected a suicide attempt rate increase from 12.49 (7.42-21.01) to 21.38 (12.71-35.99). CONCLUSIONS: The interval exposed to the protracted mass social trauma of the COVID-19 pandemic was associated with a lower suicide attempt rate compared to the unexposed interval. However, this trend is likely to reverse 10 months after lifting social mitigation policies, underscoring the need for enhanced implementation of public health policy for suicide prevention.

2.
JAMA Netw Open ; 6(2): e230233, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2284471

ABSTRACT

This cross-sectional study uses electronic health record data to compare monthly incidence rates of spontaneous abortion in Israel before and during the COVID-19 pandemic.


Subject(s)
Abortion, Induced , Abortion, Spontaneous , COVID-19 , Pregnancy , Female , Humans , Abortion, Spontaneous/epidemiology , Israel , Pandemics
3.
Commun Biol ; 6(1): 315, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2249457

ABSTRACT

Following evidence of waning immunity against both infection and severe disease after 2 doses of the BNT162b2 vaccine, Israel began administering a 3rd BNT162b2 dose (booster) in July 2021. Recent studies showed that the 3rd dose provides a much lower protection against infection with the Omicron variant compared to the Delta variant and that this protection wanes quickly. However, there is little evidence regarding the protection of the 3rd dose against Omicron (BA.1/BA.2) severe disease. In this study, we estimate the preservation of immunity from severe disease up to 7 months after receiving the booster dose. We calculate rates of severe SARS-CoV-2 disease between groups of individuals aged 60 and above, comparing those who received two doses at least 4 months previously to those who received the 3rd dose (stratified by the time from vaccination), and to those who received a 4th dose. The analysis shows that protection conferred by the 3rd dose against Omicron severe disease did not wane over a 7-month period. Moreover, a 4th dose further improved protection, with a severe disease rate approximately 3-fold lower than in the 3-dose cohorts.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Israel/epidemiology
4.
Lancet Infect Dis ; 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2227465

ABSTRACT

BACKGROUND: The BNT162b2 (Pfizer-BioNTech) two-dose vaccine regiment for children and the BNT162b2 third dose for adolescents were approved shortly before the SARS-CoV-2 omicron (B.1.1.529) outbreak in Israel. We aimed to estimate the effects of these vaccines on the rates of confirmed infection against the omicron variant in children and adolescents. METHODS: In this observational cohort study, we extracted data for the omicron-dominated (sublineage BA.1) period. We compared rates of confirmed SARS-CoV-2 infection between children aged 5-10 years 14-35 days after receiving the second vaccine dose with an internal control group of children 3-7 days after receiving the first dose (when the vaccine is not yet effective). Similarly, we compared confirmed infection rates in adolescents aged 12-15 years 14-60 days after receiving a booster dose with an internal control group of adolescents 3-7 days after receiving the booster dose. We used Poisson regression, adjusting for age, sex, socioeconomic status, calendar week, and exposure. FINDINGS: Between Dec 26, 2021, and Jan 8, 2022, we included 1 158 289 participants. In children aged 5-10 years, the adjusted rate of confirmed infection was 2·3 times (95% CI 2·0-2·5) lower in children who received a second dose than in the internal control group. The adjusted infection rate in children who received a second dose was 102 infections per 100 000 risk-days (94-110) compared with 231 infections per 100 000 risk-days (215-248) in the corresponding internal control cohort. In adolescents aged 12-15 years, the booster dose decreased confirmed infection rates by 3·3 times (2·8-4·0) compared with in the internal control group. The adjusted infection rate of the booster cohort was 70 per 100 000 risk-days (60-81) compared with 232 per 100 000 risk-days (212-254) in the internal control cohort. INTERPRETATION: A recent two-dose vaccination regimen with BNT162b2 and a recent booster dose in adolescents substantially reduced the rate of confirmed infection compared with the internal control groups. Future studies are needed to assess the duration of this protection and protection against other outcomes such as paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 and long-COVID. FUNDING: None.

5.
Emerg Themes Epidemiol ; 19(1): 9, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119462

ABSTRACT

BACKGROUND: Interrupted time series (ITS) analysis is a time series regression model that aims to evaluate the effect of an intervention on an outcome of interest. ITS analysis is a quasi-experimental study design instrumental in situations where natural experiments occur, gaining popularity, particularly due to the Covid-19 pandemic. However, challenges, including the lack of a control group, have impeded the quantification of the effect size in ITS. The current paper proposes a method and develops a user-friendly R package to quantify the effect size of an ITS regression model for continuous and count outcomes, with or without seasonal adjustment. RESULTS: The effect size presented in this work, together with its corresponding 95% confidence interval (CI) and P-value, is based on the ITS model-based fitted values and the predicted counterfactual (the exposed period had the intervention not occurred) values. A user-friendly R package to fit an ITS and estimate the effect size was developed and accompanies this paper. To illustrate, we implemented a nation population-based ITS study from January 2001 to May 2021 covering the all-cause mortality of Israel (n = 9,350 thousand) to quantify the effect size of Covid-19 exposure on mortality rates. In the period unexposed to the Covid-19 pandemic, the mortality rate decreased over time and was expected to continue decreasing had Covid-19 not occurred. In contrast, the period exposed to the Covid-19 pandemic was associated with an increased all-cause mortality rate (relative risk = 1.11, 95% CI = 1.04, 1.18, P < 0.001). CONCLUSION: For the first time, the effect size in ITS: was quantified, can be estimated by end-users with an R package we developed, and was demonstrated with data showing an increase in mortality following the Covid-19 pandemic. ITS effect size reporting can assist public health policy makers in assessing the magnitude of the entire intervention effect using a single, readily understood measure.

6.
Psychol Med ; : 1-9, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1960175

ABSTRACT

BACKGROUND: The COVID-19 pandemic has been associated with increased levels of depression and anxiety with implications for the use of antidepressant medications. METHODS: The incident rate of antidepressant fills before and during the COVID-19 pandemic were compared using interrupted time-series analysis followed by comprehensive sensitivity analyses on data derived from electronic medical records from a large health management organization providing nationwide services to 14% of the Israeli population. The dataset covered the period from 1 January 2013 to 1 February 2021, with 1 March 2020 onwards defined as the period of the COVID-19 pandemic. Forecasting analysis was implemented to test the effect of the vaccine roll-out and easing of social restrictions on antidepressant use. RESULTS: The sample consisted of 852 233 persons with a total antidepressant incident fill count of 139 535.4 (total cumulative rate per 100 000 = 16 372.91, 95% CI 16 287.19-16 459.01). We calculated the proportion of antidepressant prescription fills for the COVID-19 period, and the counterfactual proportion for the same period, assuming COVID-19 had not occurred. The difference in these proportions was significant [Cohen's h = 10-3 (0.16), 95% CI 10-3 ( - 0.71 to 1.03)]. The pandemic was associated with a significant increase in the slope of the incident rate of antidepressant fills (slope change = 0.01, 95% CI 0.00-0.03; p = 0.04) and a monthly increase of 2% compared to the counterfactual (the estimated rate assuming no pandemic occurred). The increased rate was more pronounced in women, and was not modified by lockdown on/off periods, socioeconomic or SARS-CoV-2 status. The rate of observed antidepressant fills was similar to that forecasted under the assumption of ongoing COVID-19 distress. CONCLUSION: These findings underscore the toll of the pandemic on mental health and inform mental health policy and service delivery during and after implementing COVID-19 attenuation strategies.

7.
Am J Epidemiol ; 191(8): 1420-1428, 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-1886365

ABSTRACT

The worldwide shortage of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while the pandemic still remains uncontrolled has led many countries to the dilemma of whether or not to vaccinate previously infected persons. Understanding the level of protection conferred by previous infection compared with that of vaccination is important for policy-making. We analyzed an updated individual-level database of the entire population of Israel to assess the protection provided by both prior infection and vaccination in preventing subsequent SARS-CoV-2 infection, hospitalization with coronavirus disease 2019 (COVID-19), severe disease, and death due to COVID-19. Outcome data were collected from December 20, 2020, to March 20, 2021. Vaccination was highly protective, with overall estimated effectiveness of 94.5% (95% confidence interval (CI): 94.3, 94.7) for documented infection, 95.8% (95% CI: 95.2, 96.2) for hospitalization, 96.3% (95% CI: 95.7, 96.9) for severe illness, and 96.0% (95% CI: 94.9, 96.9) for death. Similarly, the overall estimated level of protection provided by prior SARS-CoV-2 infection was 94.8% (95% CI: 94.4, 95.1) for documented infection, 94.1% (95% CI: 91.9, 95.7) for hospitalization, and 96.4% (95% CI: 92.5, 98.3) for severe illness. Our results should be considered by policy-makers when deciding whether or not to prioritize vaccination of previously infected adults.


Subject(s)
COVID-19 , Viral Vaccines , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Israel/epidemiology , SARS-CoV-2
8.
N Engl J Med ; 386(23): 2201-2212, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1864786

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides natural immunity against reinfection. Recent studies have shown waning of the immunity provided by the BNT162b2 vaccine. The time course of natural and hybrid immunity is unknown. METHODS: Using the Israeli Ministry of Health database, we extracted data for August and September 2021, when the B.1.617.2 (delta) variant was predominant, on all persons who had been previously infected with SARS-CoV-2 or who had received coronavirus 2019 vaccine. We used Poisson regression with adjustment for confounding factors to compare the rates of infection as a function of time since the last immunity-conferring event. RESULTS: The number of cases of SARS-CoV-2 infection per 100,000 person-days at risk (adjusted rate) increased with the time that had elapsed since vaccination with BNT162b2 or since previous infection. Among unvaccinated persons who had recovered from infection, this rate increased from 10.5 among those who had been infected 4 to less than 6 months previously to 30.2 among those who had been infected 1 year or more previously. Among persons who had received a single dose of vaccine after previous infection, the adjusted rate was low (3.7) among those who had been vaccinated less than 2 months previously but increased to 11.6 among those who had been vaccinated at least 6 months previously. Among previously uninfected persons who had received two doses of vaccine, the adjusted rate increased from 21.1 among those who had been vaccinated less than 2 months previously to 88.9 among those who had been vaccinated at least 6 months previously. CONCLUSIONS: Among persons who had been previously infected with SARS-CoV-2 (regardless of whether they had received any dose of vaccine or whether they had received one dose before or after infection), protection against reinfection decreased as the time increased since the last immunity-conferring event; however, this protection was higher than that conferred after the same time had elapsed since receipt of a second dose of vaccine among previously uninfected persons. A single dose of vaccine after infection reinforced protection against reinfection.


Subject(s)
COVID-19 , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunity, Innate , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2 , Time Factors , Viral Vaccines/immunology , Viral Vaccines/therapeutic use
9.
Isr J Health Policy Res ; 11(1): 22, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1808383

ABSTRACT

The COVID-19 pandemic cast a dramatic spotlight on the use of data as a fundamental component of good decision-making. Evaluating and comparing alternative policies required information on concurrent infection rates and insightful analysis to project them into the future. Statisticians in Israel were involved in these processes early in the pandemic in some silos as an ad-hoc unorganized effort. Informal discussions within the statistical community culminated in a roundtable, organized by three past presidents of the Israel Statistical Association, and hosted by the Samuel Neaman Institute in April 2021. The meeting was designed to provide a forum for exchange of views on the profession's role during the COVID-19 pandemic, and more generally, on its influence in promoting evidence-based public policy. This paper builds on the insights and discussions that emerged during the roundtable meeting and presents a general framework, with recommendations, for involving statisticians and statistics in decision-making.


Subject(s)
COVID-19 , Humans , Israel/epidemiology , Pandemics/prevention & control , Public Policy
10.
Nat Commun ; 13(1): 1971, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1788288

ABSTRACT

Israel began administering a BNT162b2 booster dose to restore protection following the waning of the 2-dose vaccine. Biological studies have shown that a "fresh" booster dose leads to increased antibody levels compared to a fresh 2-dose vaccine, which may suggest increased effectiveness. To compare the real-world effectiveness of a fresh (up to 60 days) booster dose with that of a fresh 2-dose vaccine, we took advantage of a quasi-experimental study that compares populations that were eligible to receive the vaccine at different times due to age-dependent policies. Specifically, we compared the confirmed infection rates in adolescents aged 12-14 (215,653 individuals) who received the 2-dose vaccine and in adolescents aged 16-18 (103,454 individuals) who received the booster dose. Our analysis shows that the confirmed infection rate was lower by a factor of 3.7 (95% CI: 2.7 to 5.2) in the booster group.


Subject(s)
BNT162 Vaccine , COVID-19 , Adolescent , COVID-19/prevention & control , Humans , Immunization, Secondary , Israel , SARS-CoV-2
11.
N Engl J Med ; 386(18): 1712-1720, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1774020

ABSTRACT

BACKGROUND: On January 2, 2022, Israel began administering a fourth dose of BNT162b2 vaccine to persons 60 years of age or older. Data are needed regarding the effect of the fourth dose on rates of confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and of severe coronavirus disease 2019 (Covid-19). METHODS: Using the Israeli Ministry of Health database, we extracted data on 1,252,331 persons who were 60 years of age or older and eligible for the fourth dose during a period in which the B.1.1.529 (omicron) variant of SARS-CoV-2 was predominant (January 10 through March 2, 2022). We estimated the rate of confirmed infection and severe Covid-19 as a function of time starting at 8 days after receipt of a fourth dose (four-dose groups) as compared with that among persons who had received only three doses (three-dose group) and among persons who had received a fourth dose 3 to 7 days earlier (internal control group). For the estimation of rates, we used quasi-Poisson regression with adjustment for age, sex, demographic group, and calendar day. RESULTS: The number of cases of severe Covid-19 per 100,000 person-days (unadjusted rate) was 1.5 in the aggregated four-dose groups, 3.9 in the three-dose group, and 4.2 in the internal control group. In the quasi-Poisson analysis, the adjusted rate of severe Covid-19 in the fourth week after receipt of the fourth dose was lower than that in the three-dose group by a factor of 3.5 (95% confidence interval [CI], 2.7 to 4.6) and was lower than that in the internal control group by a factor of 2.3 (95% CI, 1.7 to 3.3). Protection against severe illness did not wane during the 6 weeks after receipt of the fourth dose. The number of cases of confirmed infection per 100,000 person-days (unadjusted rate) was 177 in the aggregated four-dose groups, 361 in the three-dose group, and 388 in the internal control group. In the quasi-Poisson analysis, the adjusted rate of confirmed infection in the fourth week after receipt of the fourth dose was lower than that in the three-dose group by a factor of 2.0 (95% CI, 1.9 to 2.1) and was lower than that in the internal control group by a factor of 1.8 (95% CI, 1.7 to 1.9). However, this protection waned in later weeks. CONCLUSIONS: Rates of confirmed SARS-CoV-2 infection and severe Covid-19 were lower after a fourth dose of BNT162b2 vaccine than after only three doses. Protection against confirmed infection appeared short-lived, whereas protection against severe illness did not wane during the study period.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Israel/epidemiology
12.
Lancet ; 399(10328): 924-944, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1768606

ABSTRACT

BACKGROUND: Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. METHODS: This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1-6 months after full vaccination. FINDINGS: Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer-BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9-29·8) among people of all ages and 20·7 percentage points (10·2-36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4-41·6) in people of all ages and 32·0 percentage points (11·0-69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1-15·4) in people of all ages and 9·5 percentage points (5·7-14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. INTERPRETATION: COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20-30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. FUNDING: Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , Ad26COVS1/therapeutic use , BNT162 Vaccine/therapeutic use , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors
13.
Eur Psychiatry ; 65(1): e7, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1648438

ABSTRACT

BACKGROUND: Studies of COVID-19 pandemic biopsychosocial exposure and schizophrenia risk showed contradictory results, were undertaken early in the pandemic, and did not consider lockdowns or COVID-19 infection. Hence, we examined the association between COVID-19 biopsychosocial exposure and incident schizophrenia. METHODS: An interrupted time-series study design was implemented based on Israeli electronic health records from 2013 to 2021 with national coverage. The period coinciding with the COVID-19 pandemic biopsychosocial exposures from March 2020 to February 2021 was classified as exposed, otherwise unexposed. The effect of the COVID-19 pandemic on incident schizophrenia was quantified by fitting a Poisson regression and modeling the relative risk (RR) and corresponding 95% confidence intervals (CI). Three scenarios were projected from the third lockdown to 10 months to forecast incident schizophrenia rates and their associated 95% prediction intervals (PI). RESULTS: The total population (N = 736,356) yielded 4,310 cases of incident schizophrenia over time. The primary analysis showed that the period exposed to the COVID-19 pandemic was associated with a reduced RR (RR = 0.81, 95% CI = 0.73, 0.91, p < 0.001). This conclusion was supported in 12 sensitivity analyses, including scrutinizing lockdowns and COVID-19 infection status. Two of three forecast scenarios projected an incident increase (6.74, 95% PI = 5.80, 7.84; 7.40, 95% PI = 6.36, 8.60). CONCLUSIONS: The reduced risk of schizophrenia during the pandemic suggests no immediate triggering of new onsets either by the virus or the pandemic-induced psychosocial adversities. Once restrictions are lifted, the increased projected presentations have implications for clinicians and healthcare policy.


Subject(s)
COVID-19 , Schizophrenia , Communicable Disease Control , Humans , Pandemics , Risk , SARS-CoV-2 , Schizophrenia/epidemiology
14.
N Engl J Med ; 385(26): 2421-2430, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1562194

ABSTRACT

BACKGROUND: After promising initial results from the administration of a third (booster) dose of the BNT162b2 messenger RNA vaccine (Pfizer-BioNTech) to persons 60 years of age or older, the booster campaign in Israel was gradually expanded to persons in younger age groups who had received a second dose at least 5 months earlier. METHODS: We extracted data for the period from July 30 to October 10, 2021, from the Israel Ministry of Health database regarding 4,696,865 persons 16 years of age or older who had received two doses of BNT162b2 at least 5 months earlier. In the primary analysis, we compared the rates of confirmed coronavirus disease 2019 (Covid-19), severe illness, and death among those who had received a booster dose at least 12 days earlier (booster group) with the rates among those who had not received a booster (nonbooster group). In a secondary analysis, we compared the rates in the booster group with the rates among those who had received a booster 3 to 7 days earlier (early postbooster group). We used Poisson regression models to estimate rate ratios after adjusting for possible confounding factors. RESULTS: The rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of approximately 10 (range across five age groups, 9.0 to 17.2) and was lower in the booster group than in the early postbooster group by a factor of 4.9 to 10.8. The adjusted rate difference ranged from 57.0 to 89.5 infections per 100,000 person-days in the primary analysis and from 34.4 to 38.3 in the secondary analysis. The rates of severe illness in the primary and secondary analyses were lower in the booster group by a factor of 17.9 (95% confidence interval [CI], 15.1 to 21.2) and 6.5 (95% CI, 5.1 to 8.2), respectively, among those 60 years of age or older and by a factor of 21.7 (95% CI, 10.6 to 44.2) and 3.7 (95% CI, 1.3 to 10.2) among those 40 to 59 years of age. The adjusted rate difference in the primary and secondary analyses was 5.4 and 1.9 cases of severe illness per 100,000 person-days among those 60 years of age or older and 0.6 and 0.1 among those 40 to 59 years of age. Among those 60 years of age or older, mortality was lower by a factor of 14.7 (95% CI, 10.0 to 21.4) in the primary analysis and 4.9 (95% CI, 3.1 to 7.9) in the secondary analysis. The adjusted rate difference in the primary and secondary analyses was 2.1 and 0.8 deaths per 100,000 person-days. CONCLUSIONS: Across the age groups studied, rates of confirmed Covid-19 and severe illness were substantially lower among participants who received a booster dose of the BNT162b2 vaccine than among those who did not.


Subject(s)
BNT162 Vaccine , COVID-19/epidemiology , Immunization, Secondary , Patient Acuity , Vaccine Efficacy/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , Female , Humans , Israel/epidemiology , Male , Middle Aged , Young Adult
15.
N Engl J Med ; 385(24): e85, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1493320

ABSTRACT

BACKGROUND: In December 2020, Israel began a mass vaccination campaign against coronavirus disease 2019 (Covid-19) by administering the BNT162b2 vaccine, which led to a sharp curtailing of the outbreak. After a period with almost no cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a resurgent Covid-19 outbreak began in mid-June 2021. Possible reasons for the resurgence were reduced vaccine effectiveness against the delta (B.1.617.2) variant and waning immunity. The extent of waning immunity of the vaccine against the delta variant in Israel is unclear. METHODS: We used data on confirmed infection and severe disease collected from an Israeli national database for the period of July 11 to 31, 2021, for all Israeli residents who had been fully vaccinated before June 2021. We used a Poisson regression model to compare rates of confirmed SARS-CoV-2 infection and severe Covid-19 among persons vaccinated during different time periods, with stratification according to age group and with adjustment for possible confounding factors. RESULTS: Among persons 60 years of age or older, the rate of infection in the July 11-31 period was higher among persons who became fully vaccinated in January 2021 (when they were first eligible) than among those fully vaccinated 2 months later, in March (rate ratio, 1.6; 95% confidence interval [CI], 1.3 to 2.0). Among persons 40 to 59 years of age, the rate ratio for infection among those fully vaccinated in February (when they were first eligible), as compared with 2 months later, in April, was 1.7 (95% CI, 1.4 to 2.1). Among persons 16 to 39 years of age, the rate ratio for infection among those fully vaccinated in March (when they were first eligible), as compared with 2 months later, in May, was 1.6 (95% CI, 1.3 to 2.0). The rate ratio for severe disease among persons fully vaccinated in the month when they were first eligible, as compared with those fully vaccinated in March, was 1.8 (95% CI, 1.1 to 2.9) among persons 60 years of age or older and 2.2 (95% CI, 0.6 to 7.7) among those 40 to 59 years of age; owing to small numbers, the rate ratio could not be calculated among persons 16 to 39 years of age. CONCLUSIONS: These findings indicate that immunity against the delta variant of SARS-CoV-2 waned in all age groups a few months after receipt of the second dose of vaccine.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , COVID-19/epidemiology , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Aged , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunization, Secondary , Israel/epidemiology , Male , Middle Aged , Patient Acuity , Poisson Distribution , Regression Analysis , Socioeconomic Factors , Time Factors
16.
N Engl J Med ; 385(15): 1393-1400, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1410382

ABSTRACT

BACKGROUND: On July 30, 2021, the administration of a third (booster) dose of the BNT162b2 messenger RNA vaccine (Pfizer-BioNTech) was approved in Israel for persons who were 60 years of age or older and who had received a second dose of vaccine at least 5 months earlier. Data are needed regarding the effect of the booster dose on the rate of confirmed coronavirus 2019 disease (Covid-19) and the rate of severe illness. METHODS: We extracted data for the period from July 30 through August 31, 2021, from the Israeli Ministry of Health database regarding 1,137,804 persons who were 60 years of age or older and had been fully vaccinated (i.e., had received two doses of BNT162b2) at least 5 months earlier. In the primary analysis, we compared the rate of confirmed Covid-19 and the rate of severe illness between those who had received a booster injection at least 12 days earlier (booster group) and those who had not received a booster injection (nonbooster group). In a secondary analysis, we evaluated the rate of infection 4 to 6 days after the booster dose as compared with the rate at least 12 days after the booster. In all the analyses, we used Poisson regression after adjusting for possible confounding factors. RESULTS: At least 12 days after the booster dose, the rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of 11.3 (95% confidence interval [CI], 10.4 to 12.3); the rate of severe illness was lower by a factor of 19.5 (95% CI, 12.9 to 29.5). In a secondary analysis, the rate of confirmed infection at least 12 days after vaccination was lower than the rate after 4 to 6 days by a factor of 5.4 (95% CI, 4.8 to 6.1). CONCLUSIONS: In this study involving participants who were 60 years of age or older and had received two doses of the BNT162b2 vaccine at least 5 months earlier, we found that the rates of confirmed Covid-19 and severe illness were substantially lower among those who received a booster (third) dose of the BNT162b2 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunization, Secondary , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , Databases, Factual , Female , Humans , Israel/epidemiology , Male , Middle Aged , Patient Acuity , Poisson Distribution , SARS-CoV-2
17.
PLoS Comput Biol ; 17(2): e1008559, 2021 02.
Article in English | MEDLINE | ID: covidwho-1079303

ABSTRACT

One of the significant unanswered questions about COVID-19 epidemiology relates to the role of children in transmission. This study uses data on infections within households in order to estimate the susceptibility and infectivity of children compared to those of adults. The data were collected from households in the city of Bnei Brak, Israel, in which all household members were tested for COVID-19 using PCR (637 households, average household size of 5.3). In addition, serological tests were performed on a subset of the individuals in the study. Inspection of the PCR data shows that children are less likely to be tested positive compared to adults (25% of children positive over all households, 44% of adults positive over all households, excluding index cases), and the chance of being positive increases with age. Analysis of joint PCR/serological data shows that there is under-detection of infections in the PCR testing, which is more substantial in children. However, the differences in detection rates are not sufficient to account for the differences in PCR positive rates in the two age groups. To estimate relative transmission parameters, we employ a discrete stochastic model of the spread of infection within a household, allowing for susceptibility and infectivity parameters to differ among children and adults. The model is fitted to the household data using a simulated maximum likelihood approach. To adjust parameter estimates for under-detection of infections in the PCR results, we employ a multiple imputation procedure using estimates of under-detection in children and adults, based on the available serological data. We estimate that the susceptibility of children (under 20 years old) is 43% (95% CI: [31%, 55%]) of the susceptibility of adults. The infectivity of children was estimated to be 63% (95% CI: [37%, 88%]) relative to that of adults.


Subject(s)
COVID-19/transmission , Family Characteristics , Adolescent , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Israel/epidemiology , Likelihood Functions , SARS-CoV-2/isolation & purification , Stochastic Processes , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL